Грозовые разряды атмосферного электричества могут вызывать повреждения изоляции, аварии в электроустановках, несчастные случаи с людьми и разрушение зданий и сооружений.
Возникновение грозовых разрядов
При нагреве солнцем земной поверхности возникают восходящие потоки воздуха, насыщенные водяными парами. Более мелкие частицы воды заряжаются отрицательно, более крупные — положительно.
Под действием ветра и силы тяжести происходит разделение разноименно заряженных частиц. Частицы воды в облаках, поднявшихся на высоту более 5 км, замерзают и разрушаются. Положительно заряженные кристаллики располагаются в верхней части облака, на высоте 5—7 км, отрицательно заряженные — на высоте 2—5 км. В результате разделения зарядов в облаках образуются так называемые объемные заряды, и различные части грозового облака имеют разную величину и знак заряда. Заряды нижней части облака наводят на земле заряды противоположного знака.
Между облаками и землей, а также между разными частями облака или между разными облаками возникают поля высокой напряженности — несколько десятков тысяч вольт на сантиметр. При напряженности поля около 30 кВ/см происходит ионизация воздуха, начинается пробой — так называемый лидерный разряд (слабосветящийся канал диаметром 10—20 м), движущийся со средней скоростью до 200—300 км/сек.
Под действием поля заряды на земле — на участках с повышенной проводимостью (влажные места, электропроводящие слои и т. д.) или с высокими объектами (холмы, дымовые трубы, водонапорные башни, опоры, провода линий электропередач, деревья, отдельно стоящие на равнине здания и т. д.) — движутся навстречу лидеру.
Лидер направляется к тому объекту, по отношению к которому напряженность электрического поля наиболее высока, и тогда возникает мощный встречный разряд, распространяющийся со скоростью, соизмеримой со скоростью света (рис. 1). При этом за время меньше одной десятитысячной доли секунды через пораженное сооружение проходит ток, достигающий сотен тысяч ампер, под действием которого плазма разогревается до нескольких десятков тысяч градусов и начинает ярко светиться.
Световой эффект разряда воспринимается как молния, а взрывообразное расширение воздуха в канале разряда вызывает звуковой эффект — гром.
Рис. 1. Схема процесса электризации грозового облака и развития грозового разряда на наземный объект.
Как показали измерения, примерно 3/4 разрядов возникает из отрицательно заряженных частей облака, 1/4 разрядов — из положительно заряженных зон. Вслед за первым могут возникнуть еще несколько последовательных разрядов.
Грозовые разряды характеризуются следующими параметрами:
• амплитуда тока — наиболее часто наблюдается ток 10—30 кА, в 5—6% измерений ток достигал величины 100—200 кА;
• длина фронта волны — длительность нарастания тока молнии до его максимального значения (обычно 1,5—2 мкс).
Значительно реже наблюдают шаровую молнию, представляющую собой светящийся плазменный шар диаметром до полуметра медленно движущийся под влиянием потоков воздуха вдоль поверхности земли. Шаровая молния проникает в здания через дымовые трубы, окна, двери.
Если шаровая молния касается живого организма, бывают смертельные поражения, возникают сильные ожоги, а при соприкосновении с сооружениями происходит взрыв и механическое разрушение объектов. Природа шаровой молнии еще недостаточно изучена.
Защита от молний это достаточно важный пункт в электрической цепи дома. Если в многоквартирном доме этим занимается организация, обслуживающая электрическую сеть, то в частном жилом фонде зачастую приходится все брать в свои руки. Но прежде чем начать наш рассказ, мы достаточно в очень краткой форме постараемся рассмотреть, что такое молния и какая она бывает. Молния - это природный разряд электричества.
Условия возникновения молний.
1. Мощные вертикальные движения воздушных масс.
2. Достаточно влажный воздух.
3. Большой вертикальный градиент температуры.
Классификация молний.
По развивающему каналу.
1. Направленные в низ молнии.
2. Направленные в верх молнии.
По характеру заряда.
1. Отрицательные молнии (90%).
2. Положительные молнии (10%).
Молния состоит из одного или нескольких ударов.
1. Короткий удар молнии до 2мс.
2. Длинный удар молнии более 2мс.
Итак наше введение закончено, как вы уже успели заметить, что мы действительно в очень краткой форме постарались вам напомнить багаж школьных знаний. Ну, а теперь переходим непосредственно к нашему сегодняшнему рассказу.
Воздействие тока молнии на здания и сооружения
Прямой удар молнии вызывает расщепление опор, расплавление конструкций, воспламенение и взрыв, механическое разрушение, недопустимый нагрев металлических конструкций от протекающего по ним в землю тока молнии. По данным эксплуатации молния прожигает листовой металл толщиной 4 мм.
Электростатическая индукция проявляется в создании на изолированных от земли металлических конструкциях и проводниках высокого потенциала, приводящего к пробою на землю, который в свою очередь может вызвать поражение людей током, воспламенение и взрыв взрывоопасных смесей, а также нарушение изоляции в электроустановках.
Электромагнитная индукция проявляется в индуктировании при токе разряда на протяженных изолированных друг от друга и от земли металлических конструкциях и коммуникациях (балки, рельсы, трубопроводы и т. п.) высоких потенциалов, которые могут вызвать искру или дугу.
При грозовом разряде происходит также занос высоких потенциалов по внешним наземным конструкциям и коммуникациям.
Здания и сооружения, в зависимости от их назначения и интенсивности грозовой деятельности в районе их местонахождения, должны иметь защиту от поражения молнией или вызванных разрядом молнии вторичных воздействий.
Территория от Урала до Красноярска и южней Красноярска, от Красноярска до Хабаровска относится к. местностям со средней продолжительностью грозовой деятельности от 40 до 60 часов. В районе северней Красноярска, от Красноярска до Николаевска-на-Амуре, средняя продолжительность грозовой деятельности от 20 до 40 часов. Повышенная грозовая деятельность от 60 до 80 часов в год наблюдается в районах Горного Алтая (Бийск—Горно-Алтайск — Усть-Каменогорск). Молниезащита зданий и сооружений должна выполняться по проектам, разработанным специализированными организациями.
Молниезащита.
Молниезащита бывает внутренней (Защита от вторичных воздействия тока молнии)и внешней (Защита от прямых ударов молнии.). Это если посмотреть в глубь вопроса, как бы два охранных контура, которые работая в паре друг с другом, могут почти на все 100% обезопасить ваше жилище.
Защита от прямых ударов молнии.
Зона действия молниеотвода
Действие молниезащитных устройств заключается в том, что вблизи защищаемого объекта устанавливается возвышающийся над ним металлический молниеприемник, надежно соединенный с землей. При возникновении грозового разряда, лидер, устремляющийся к земле, приближается к наиболее высокой точке, имеющей повышенную проводимость (такой точкой служит вершина заземленного молниеприемника), и разряд происходит на молниеприемник, минуя защищаемый объект.
Зоной защиты одиночного стержневого молниеприемника высотой h является конус высотой 0,92 h с основанием в виде круга радиусом 1,5 h (рис. 2).
Все сооружения, вписывающиеся в конус, будут защищены от прямого удара молнии с надежностью не менее 95% (зона Б). Внутри конуса высотой 0,85 h и радиусом основания 1,1 h надежность защиты составляет 99,5%. (Зона А).
Рис. 2. Зоны защиты одиночного стержневого молниеотвода. А – зона защиты с надежностью 99,5%; Б – зона защиты с надежностью 95%; 1 – молниеотвод; 2 – защищаемый объект.
Если площадь объекта больше защищаемой зоны, нужно увеличить высоту молниеотвода или устанавливать несколько молниеотводов.
Внешняя защита.(Защита от прямых ударов молнии.)
В первую очередь это молниеотвод, которой всегда устанавливается на самой высокой точке дома, соединенный проводником с вашей системой заземления.
Задача внешней системы молниезащиты состоит в том, чтобы на долю секунды раньше непосредственного контакта уловить разряд молнии и отправить его по токоотводам на заземление.
Молниеприемник, который устанавливается на крыше, обычно бывает двух видов.
1. Высокий металлический штырь.
2. Трос, протянутый вдоль всего конька крыши.
Есть еще один вариант и состоит он в том, что на крышу вашего жилья укладывается металлическая сетка, сваренная из арматур сечением 8 - 10 кв.мм, и с шагом ячеек обычно составляющих 2- 6м.
Но в принципе, между всеми этими способами молниезащиты особой разницы не существует. Задача у всех одна - уловить разряд молнии.
Сечение молниеприемника должно быть не меньше 12 кв.мм, но лучше конечно, чтобы ваш молниеприемник имел запас по сечению. При установке штыря всегда надо помнить, что он должен возвышаться над самой высокой точкой кровли не меньше чем на 30 см, то же самое относится и к тросовому приемнику.
Здесь так же следует помнить еще один момент. Зона, которую защищает громоотвод, примерно равна его высоте. То есть при высоте над землей к примеру 8м он защитит от попадания молнии территорию круга с радиусом равным 8 метрам. И ниже, мы постарались привести вам в пример ряд схематичных рисунков громоотводов и зон, которые они могут защитить.
Рисунок 1.
Рисунок 2.
Рисунок 3.
Провод, по которому энергия молнии пойдет к заземлителю, лучше брать стальной сечением не меньше 10кв.мм или медный с сечением не меньше 6кв.мм. Здесь, это тот случай когда чем толще, тем лучше. Проводник соединяется с приемником сваркой или при помощи болтового соединения. Проводник не должен проходить мимо металлических элементов ближе чем на 30см.
Внутренняя защита. Защита от вторичных воздействия тока молнии
Основной мерой борьбы с возникновением внутри зданий или сооружений высоких потенциалов вследствие электростатической индукции при атмосферных разрядах является заземление всех проводящих элементов здания.
Для устранения влияния электромагнитной индукции в протяженных металлических элементах (трубопроводы, металлоконструкции и т. п.) последние надежно соединяют металлическими перемычками.
Для устранения заноса высоких потенциалов через воздушные и подземные коммуникации вводы сетей электроснабжения, радиофикации, сигнализации и связи выполняют кабельными и устанавливают вентильные разрядники (например РВН-0,5) и искровые промежутки, срабатывающие при увеличении напряжения.
Данный вид защиты обеспечивают спец устройства, которые обычно добавляются в схему домового щитка и ВУ (вводного устройства). Суть данных спец устройств в следующем - предположим, что молния и не попадает в дом, но во время грозы довольно часто происходят скачки напряжения. Это объясняется тем, что электромагнитное поле при ударе молнии может создавать импульсные токи в проводке и всевозможных устройствах.
Разряд необязательно должен ударить именно в дом - это может произойти и на расстоянии. Но если же все-таки молния попадает в дом, то в лучшем случае молниеотвод сбросит напряжение в заземлитель, но, а в худшем - разряд ударит по электрической сети вашего дома.
Даже когда энергия молнии стечет по молниеотводу, ток, возникающий в проводке, может привести к порче чувствительной аппаратуры. Ну, а при прямом воздействии, лучше и не представлять, что может произойти. И здесь нам бы хотелось представить вашему вниманию достаточно интересную таблицу - способов распространения высоковольтных атмосферных разрядов.
Таблица 1. Высоковольтный атмосферный разряд. Способы распространения.
Чтобы всего этого не произошло существуют специальные устройства - ограничители.
Рисунок 4.
А. Ограничитель категории В.
Б. Ограничитель категории В+С.
В. Ограничитель категории С.
Существует так же ограничитель категории D. Выглядит точно так же, как и представленные нами на данном изображении ограничители. Как вы можете видеть данные устройства по своему внешнему виду напоминают обычные автоматические выключатели, только без рычага отключения. Все, что вам надо знать про ограничители перенапрежения (ОПН) - это то, что они устанавливаются между фазой и заземлением или нулевым проводом и заземлением. Задача ограничителей заключается в нейтрализации импульса перенапряжения.
На практике в основном используются три вида ограничителей - В, С, D.
1. Класс В - данные ограничители устанавливаются на в ходе в щит. Они предназначены для защиты от сверхвысокого напряжения или иначе говоря прямого удара молнии.
2. Класс С - устройства устанавливаются по схеме после ОПН класса В и служат защитой от наведенных токов.
3. Класс D - устанавливается, когда в вашем жилище находятся особо чувствительные приборы.
Применять всегда следует все три вида, потому что у них разный порог чувствительности, и ставить по схеме один за другим. ОПН рассчитаны как для однофазных сетей, так и для трех фазных.
Несколько схем подключения ограничителей:
Схема 1. Подключения ОПН, которые располагаются между входным автоматом и проводником заземления, сеть трехфазная.
Схема 2. Подключение ОПН, которые располагаются между входным автоматом и проводником заземления, сеть однофазная.
Схема 3. Подключение ОПН при однофазной цепи.
Рисунок 5. Применение ОПН различного класса для защиты аппаратуры, находящейся в данный момент в доме.
Изображения некоторых ОПН или УЗИП (устройство защиты от импульсных перенапряжений) линейки фирмы Legrand, а так же схемы их подключения:
Схемы подключения:
Примечание. Помните, что все схемы даны для примера. Все может видоизмениться при использовании другого вида оборудования.
И напоследок нам бы хотелось дать вам один, наверное уже надоевший совет. Не экономьте на защите вашего жилища. И покупайте всю аппаратуру у проверенных продавцов. И тогда ни какие молнии будут не страшны ни вам, ни вашему жилью.
Что бы оставить комментарий войдите
Комментарии (0)